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We consider equations of the type LhY=R, XhY=R, X hn=R,
RhX=LhY, where h is a binary word (language) operation, L, R are
given constant languages and X, Y are the unknowns. We investigate
the existence and uniqueness of maximal and minimal solutions,
properties of solutions, and the decidability of the existence of solu-
tions. ] 1996 Academic Press, Inc.

1. INTRODUCTION

Let 7 be a finite alphabet. A binary operation h is a map-
ping of 7*_7* into the set of subsets of 7*. The operation
h is associative if

uh (vhw)=(uhv)hw \u, v, w # 7*.

Given two languages L1 , L2 �7*, we define L1hL2=
[uhv | u # L1 , v # L2]. The well-known operations of
catenation, right�left quotient and shuffle product are exam-
ples of such operations. Other examples include the inser-
tion and deletion operations. Recall that (see [3, 4]) given
words u, v # 7*, the insertion of v into u is u � v=
[u1vu2 | u=u1u2] and the deletion of v from u is defined as
u � v=[w1w2 | u=w1vw2]. Among other binary opera-
tions we mention parallel, permuted, controlled insertion,
and deletion [4, 3], k-catenation, and k-quotient ([5]).

In this paper we study equations of the type LhY=R,
XhY=R, XhX=R, RhX=LhY, where h is a
binary word (language) operation, R and L are given non-
empty languages and X, Y are unknown languages (the
variables). In the following, X, Y, Z and their indexed
variants will denote the unknowns, while L, R and their
indexed variants will denote the given constant languages.

The case when h denotes catenation and the languages
involved are regular has been considered by Conway in [1].
We consider the existence and uniqueness of solutions.
While, when exploring maximal solutions, the results refer
to the general case of an abstract binary operation h , when

considering the minimal solutions we deal with the par-
ticular cases where the operation h is catenation.

In Section 2 we deal with equations LhY=R. In the
general case, we prove that, if the equation has a solution,
it has a unique maximal solution. The fact that all solutions
to LY=R have the same set of minimal words aids in show-
ing that if a solution exists, the equation also has a minimal
solution. A sufficient condition for the minimal solution to
be unique is obtained.

The more general equation XhY=R is considered in
Section 3. A solution (X, Y) to the equation is called an
X-maximal solution (maximal solution) if any other solu-
tion (X, Y$) (resp. (X$, Y$)) with Y�Y$ (resp. X�X$,
Y�Y$) has the property Y$=Y (resp. X$=X, Y$=Y). If a
solution to the equation exists, the equation has a unique X-
maximal solution. The maximal solution, while it always
exists, is not necessarily unique. In the case of catenation, we
show that the equation (if it has a solution) always has an
X-minimal and a minimal solution. The existence of a non-
trivial solution to XY=R proves to be decidable if R is a
regular language. It remains an open problem whether the
problem is decidable or not in case R is a context-free
language. Properties of solutions when the constant
languages belong to some important classes of languages,
for example various types of codes, are also investigated.

The concept of a minmax solution is introduced and we
show that, if the equation has a solution, it also has a
minmax solution.

Section 4 deals with equations X hn=R. If n=2 and the
equation has a solution, it also has a maximal solution. In
case of catenation, the existence of solutions also implies the
existence of a minimal solution, which is not necessarily
unique. If n=2, the problem whether the equation Xn=R
has a solution is decidable for given regular languages R
(for n>2 the problem remains open). The problem is
undecidable for given context-free languages R.

In the end of the section, the notion of a square-root
language (a language R which can be written as a square
X2=R) is introduced and its properties are studied.

Finally, in Section 5 we deal with equations RhX=
LhY. If a solution to such an equation exists, also an
X-maximal solution and a maximal solution exists. In the
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case of catenation, the existence of a solution also implies
the existence of a minimal solution which is not necessarily
unique.

One of the main tools used in proving the existence of
minimal or maximal solutions is Zorn's lemma. We recall it
in the following, together with other notions and notations
used throughout the paper.

Let E be a partially ordered set, where � is the partial
order. A subset C�E is a chain if a, b # C implies a�b or
b�a. The partially ordered set E is said to be inductive
(respectively d-inductive) if every chain C�E has an upper
bound (respectively a lower bound) x # E, that is, for every
c # C we have that c�x (respectively x�c).

We remark that the term d-inductive is not standard.
Since we need both forms of inductive sets, the term d-induc-
tive (for dual inductive) is used to avoid confusion in the
following.

Zorn's Lemma. If a partially ordered set E is inductive
(respectively d-inductive), then for every element u # E there
exists a maximal (respectively a minimal ) element umax # E
(umin # E) such that u�umax (umin�u).

A nonempty language L�7+ is a prefix (suffix, outfix)
code if u # L, ux # L (u # L, xu # L respectively u1 u2 # L,
u1 xu2 # L) implies x=1.

We recall the embedding order � e : for any w, v # 7+,
w� e v if and only if w=x1x2 } } } xn , v= y1x1y2x2 } } }
yn xn yn+1 , n�1, xi , yi # 7*, 1�i�n+1. A nonempty
language H�7+ is called a hypercode if and only if x� e y,
x, y # H, implies x= y.

A language L�7* is said to be dense (left dense, right
dense) if for every w # 7* there exist u, v # 7* (u # 7*,
v # 7*) such that uwv # L (uw # L, wv # L). A language
which is not dense (left dense, right dense) is termed thin
(left thin, right thin).

For further unexplained notions in formal language
theory and theory of codes the reader is referred to [6, 7].

2. EQUATIONS L hY =R

This section investigates equations of the form LhY=R.
After a first result concerning the existence of a maximal
solution to such an equation, we focus on the particular case
where the operation involved is catenation.

Some properties of solutions to such equations are
obtained. Moreover, the existence of minimal solutions is
studied and a sufficient condition for a minimal solution to
be unique is obtained.

A solution Ymax to the equation L h Y = R is called
a maximal solution if LhY$=R, Ymax �Y$ implies
Ymax=Y$. Analogously, a solution Ymin of the equation is
called a minimal solution if LhY$=R, Y$�Ymin implies
Ymin=Y$.

If h is catenation and if the equation LY=R with R
regular has a solution Y�7*, then it has a unique maximal
solution Y$=(L"Rc)c which is, moreover, a regular
language (see [4]). In (L"Rc)c, the symbol " denotes
quotient.

The result has been generalized to concern equations
LhY=R, where the operation h possesses a right inverse.
(The operation g is said to be the right-inverse of h iff for
all words u, v, w we have w # (uhv) � v # (ugw)). Namely,
if a solution to such an equation exists, then the language
(LgRc)c is a maximal solution (see [4]). The following
proposition further generalizes the result for equations
involving arbitrary binary operations, though without con-
structing the maximal solution.

Proposition 2.1. Suppose the equation LhY=R has a
solution Y. Then the equation has a unique maximal solution
Ymax . If the operation h is associative, then Rhx�R �
Ymax hx�Ymax.

Proof. Let u # 7* such that Lhu�R. Then
Lh (Y _ [u])=R and hence Y _ [u] is also a solution.
Let Ymax=[u # 7* | Lhu�R]. The language Ymax is not
empty, because Y�Ymax. Since LhY=R, clearly
LhYmax=R and Ymax is a solution of the equation. If Z is
another solution, then LhZ=R and hence Z�Ymax.
Therefore Ymax is the unique maximal solution of the equa-
tion LhY=R.

If Rhx�R, then (LhYmax)hx=Rhx�R and the
associativity of h implies Lh (Ymax hx)�R. Therefore
Ymax hx�Ymax.

Conversely, if Ymax hx�Ymax , then Lh (Ymax hx)�
LhYmax=R. Since

Lh (Ymax hx)=(LhYmax)hx=Rhx,

we have that Rhx�R. K

Note that if Y is a solution of LhY=R and if Ymax is the
maximal solution, then every language T, Y�T�Ymax is a
solution.

In the remainder of this section we will restrict ourselves
to equations where the operation h is catenation.

For a language T�X*, let \(T)=[u # X* | Tu�T]. It is
immediate that 1 # \(R) and that \(T) is a submonoid of
X*. A language R is called rc-simple (lc-simple), if R is a
class of a right (left) congruence. A language R is rc-simple
if and only if Rx & R{< implies Rx�R. Every rc-simple
language R can be decomposed as R=PQ*, where P and Q
are prefix codes or 1 (see [8, 2]). If 1 # R, then R=Q*. If
1 � R, then P is the set of prefix words of R and Q*=\(R).
We have symmetric results for lc-simple languages.

Proposition 2.2. If the equation LY=R has a solution,
R is an rc-simple language and Ymax is the maximal solution
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of the equation, then Ymax is rc-simple. Moreover, R=PrQ*
and Ymax=PyQ*, where Pr , Py , Q are prefix codes or 1.

Proof. As catenation is associative, Proposition 2.1
implies u # \(R) iff Ru�R � Ymax u�Ymax � u # \(Ymax).
Hence \(R)=\(Ymax).

If Ymaxx & Ymax {<, then ux=v for some u, v # Ymax .
If w # L then wux=wv with wu, wv # R. Therefore
Rx & R{< and hence Rx�R. Consequently, LYmaxx=
Rx�R. Since Ymax is maximal with the property
LYmax �R, it follows that Ymaxx�Ymax . Therefore Ymax is
rc-simple.

Consequently, R=PrQ*r , Ymax=Py Q*y and \(R)=Q*r ,
\(Ymax)=Q*y , where Qr , Qy are prefix codes or 1. Since
\(R)=\(Ymax), it follows that Qr=Qy . K

For a language L�7*, L{<, +(L)=[u # L | |u|�
|u$| \u$ # L] and m(L)=[ |u| | u # +(L)]. In other words,
+(L) contains all words of minimal length of L while m(L)
is the length of a minimal word in L.

The following lemma proves that the set of minimal
words is common to all solutions of the equation LY=R.

Lemma 2.1. Let Y, Y$ be two solutions of the equation
LY=R, R{<. Then +(Y)=+(Y$).

Proof. Note first that m(Y)=m(Y$)=m(R)&m(L).
Let u # +(Y) and v # +(L). The word w=vu belongs to +(R).
As R=LY$, there exists x # L, y # Y$ such that xy=w. As
v # +(L), we have that |x|�|v|. Assume |x|>|v|. Then the
word vy # LY$=R has the property |vy|<|w|=m(R)��
a contradiction. The only possible remaining situation is
|v|=|x|, which implies u= y, v=x. This further implies
u # Y$ and, as |u|=m(Y$)=m(Y), we conclude that
u # +(Y$). The other inclusion is similar. K

Corollary 2.1. If Y, Y$ are two solutions of the equa-
tion LY=R, R{<, then Y�7*Y$ and Y$�7*Y.

Proof. Let u # Y and s # +(L). Then su # R. Since
LY$=R, su=tv for some v # Y$ and t # L. From s # +(L)
follows that |s|�|t| and |u|�|v|. Therefore su=tv implies
t=ss1 and u=s1v, i.e., u # 7*Y$, Y�7*Y$. Similarly, it can
be shown that Y$�7*Y. K

In the remainder of this section we will investigate the
existence and uniqueness of the minimal solution to LY=R.
Lemma 2.1 will aid in showing that, if the equation has a
solution then it also has a minimal solution.

Proposition 2.3. Suppose that the equation LY=R,
L{<, R{<, has a solution Y. Then:

(i) The equation has a minimal solution Ymin with
Ymin �Y.

(ii) If +(L) x & L{< implies x=1 (in particular if L is
a prefix code), then the solution is unique.

Proof. (i) Let F=[Yi | i # I] be the family of all solu-
tions to the equation LY=R which have the property
Yi �Y. Suppose that C=[Yj | j # J] is a chain from F, i.e.,

} } } �Yj � } } } �Yk � } } } �Y.

Let Y� =�j # J Yj . According to Lemma 2.1, Y� {<, as it
contains the set +(Y). Let us now show that Y� is a solution
to the equation. As Y� �Y, we have that LY� �LY=R. For
the other inclusion, let u # R and let P=[(r, s) | r # L,
s # Y, rs=u]. There exists (x, y) # P such that y # Yj

for all j # J. Indeed, assume the contrary and let
P=[(r1 , s1), (r2 , s2), ..., (rn , sn)] be an enumeration of the
elements of P. For each (rl , sl) # P, there exists jl # J such
that sl � Yjl . Let T=�1�l�n Yjl . As the intersection is finite,
there is an index k such that T=Yk . Since LYk=R, the
equality xkyk=u holds for some yk # Yk �Y and xk # L.
This further implies (xk , yk) # P, a contradiction.

Our assumption was false, therefore (x, y) # P and y # Yj

for all j # J, which shows that u # LY� . This completes the
proof of the fact that Y� is a solution to the equation. We
have shown that the partially ordered set F is d-inductive
(every chain has a lower bound belonging to F). According
to Zorn's lemma, this implies that there is at least one mini-
mal element Ymin in the family F; that is, there exists Ymin ,
a minimal solution to the equation, with Ymin �Y.

(ii) Suppose now that Y$ and Y" are two solutions of
the equation LY=R. Let x # Y$. Then ux # R for any
u # +(L). As ux # R=LY", we have that ux=vy for some
y # Y", v # L. As u # +(L), |v|�|u|. Consequently, v=ux$,
which implies +(L) x$ & L{<. According to the hypo-
thesis, this further implies x$=1 and, consequently, u=v,
x= y. We have therefore shown that x # Y", that is,
Y$�Y". In a similar way we can show that Y"�Y$, which
proves that the solution to the equation is unique. K

A special case of minimal solution occurs when R is a left
ideal (that is, 7*R�R) R{7* and L=7*. In this case,
since every left ideal R{7* has a unique decomposition of
the form R=7*S, where S is a suffix code, the equation has
the unique minimal solution Y=S. The solution Y=7*S is
the unique maximal solution of the equation.

Let 7=[a, b], R=7+[a, b2], and L=7+. Then the
unique minimal solution is Y=[a, b2]. Since +(L)=7 and
aa # L & +(L) a, it follows that condition (ii) in the preced-
ing proposition is a sufficient, but not necessary, condition
for the uniqueness of the minimal solution.

The equation LY=R can have more than one minimal
solution. For example, take 7=[a], R=[an | n�6], and
L=[a5, a6, a8, a9] _ [a10+n | n�0]. It is easy to see that
Y1=[a, a2] and Y2=[a, a3] are two distinct minimal
solutions of the equation LY=R.
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Proposition 2.4. Let Y be a solution of LY=R. Then
this solution is minimal � A�Y, B�Y and LA=LB
implies A=B.

Proof. ( O ) Suppose that A{B. Without loss of
generality, we can assume that A=A1 _ A2 with
A1 & B=< and A2 �B.

If A1=<, then A=A2 /B. If C=Y&B, then
Y$=C _ A is a solution with Y$/Y��a contradiction with
the minimality of Y. If A1 {<, let C=Y&B&A1 . Then
Y$=C _ B is a solution with Y$/Y, contradicting the
minimality of Y. Therefore A=B.

( o ) Suppose that Y is not minimal. Then there is a
solution Y$/Y and LY=R=LY$. This implies Y=Y$,
a contradiction. K

We conclude this section with some remarks on the
decidability of the existence of solutions to the equation
LY=R. In [4, 3] it has been shown that the problem ``Does
there exist a solution Y to the equation LY=R'' is decidable
for regular languages L and R. The problem is undecidable
for context-free languages L and regular languages R.

3. EQUATIONS X hY =R

Let R�7* be a given language. Every pair (X, Y) satisfy-
ing the equality XhY=R is called a solution of the equa-
tion.

In this section we explore the existence and uniqueness of
maximal and minimal solutions, with an emphasis on the
particular case where the operation h is catenation.

If (X, Y) is a solution of the equation XhY=R and if
Xhu�R (vhY�R), then (X, Y _ [u]) ((X _ [v], Y)) is
also a solution. If the equation XhY=R has a solution
and h is associative, then, for every language L, the equa-
tions XhY=RhL and XhY=LhR also have a solu-
tion, namely (X, YhL) and (LhX, Y).

Note that if the operation h is catenation, then the equa-
tion XY=R always has two trivial solutions, namely
X=[1], Y=R or X=R, Y=[1].

A nontrivial solution to the equation is not necessarily
unique. For example, if R=[a3, a4, a5, a6] we have the
solution (X, Y) with X=[a2, a3] and Y=[a, a2, a3], but
this solution is not unique, because X=[a2, a3],
Y=[a, a3] is also a solution.

If the language R is rc-simple with R=PQ* then the
equation XY=R has the solution (P, Q*).

If (X, Y) is a solution of the equation XhY=R, then
(X, Y) is called an X-maximal solution if XhY$=R with
Y�Y$ implies Y=Y$; (X, Y) is called a Y-maximal solution
if X$hY=R with X�X$ implies X=X$; the solution
(X, Y) is called a maximal solution if X$hY$=R with
X�X$, Y�Y$ implies X=X$, Y=Y$.

Note that if (X, Y) is an X-maximal (Y-maximal) solu-
tion of XhY=R, then (Xhu) & Rc{< (respectively
(vhY) & Rc{<) for every u � Y (v � X). Indeed, if
Xhu & Rc=<, then Xhu�R and (X, Y _ [u]) is a solu-
tion, a contradiction with the X-maximality of (X, Y).

Proposition 3.1. Suppose that the equation XhY=R
has the solution (X, Y). The equation has a unique X-maximal
solution (Y-maximal solution) and a maximal solution that is
not necessarily unique.

Proof. Let F=[(X, Yi) | i # I] be the family of all the
solutions of the equation XhY=R with X fixed. Let
Ymax=�i # I Yi . Then clearly XhYmax=R and Ymax is a
solution containing all the other solutions. Hence Ymax is
the unique X-maximal solution.

Let (X, Ymax) be the unique X-maximal solution of
XhY=R and let G=[(Xj , Ymax) | j # J] be the family of all
the solutions of XhYmax=R with Ymax fixed. Let Xmax=
�j # J Xj . Then clearly Xmax hYmax=R and Xmax is a solu-
tion containing all the other solutions in relation with Ymax.
Suppose that (X$, Y$) is a solution with Xmax �X$ and
Ymax �Y$. Since X�Xmax , we have that XhY$=R and
hence Y$=Ymax because Ymax is the X-maximal solution.
Therefore X$hYmax=R and (X$, Ymax) # G. Since Xmax=
�j # J Xj and Xmax �X$, it follows that Xmax=X$. Hence
(Xmax , Ymax) is a maximal solution of the equation
XhY=R.

The maximal solution is not necessarily unique. Indeed,
suppose that the operation h is catenation. The equation
XhY=74=[u # 7* | |u|=4] has the maximal solution
X=7 and Y=73 and the maximal solution X=72=Y. K

In the remainder of this section we will consider only the
particular case where the operation involved is catenation.
In this case and if R is regular, the existence of a solution to
the equation is decidable, as shown by the following result.

Proposition 3.2. The problem whether or not the equa-
tion XY=R has a nontrivial solution is decidable for regular
languages R.

Proof. According to [4], there exists a finite number n
of distinct regular languages Ri , 1�i�n, such that, for
each L�7*, the following statements are equivalent:

(i) there exists a solution Y to the equation LY=R.

(ii) there exists an i, 1�i�n, such that LRi=R and
Y�Ri .

The regular languages Ri can be effectively constructed.
In a similar way, one can obtain a list of distinct regular

languages L1 , ..., Lm with the following property. For any
language L$, the equation XL$=R has a solution X iff it has
a solution among the languages Lj , 1� j�m, and X�Lj .
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Moreover, one can remove from the above lists languages
Ri (resp. Lj) for which the equation LRi=R (resp.
Lj L$=R) does not hold for any language L (resp. L$).

Note that the equation has a solution iff it also has a
regular solution (Lj , Ri), 1�i�n, 1� j�m. The algorithm
for deciding our problem will consist in constructing these
lists. Then we consider all the products LjRi , 1� j�m and
1�i�n. If we find one pair different from (1, R), (R, 1), for
which the product equals R, a nontrivial solution to the
equation exists. Otherwise, the equation has no nontrivial
solutions. K

A solution (X, Ymin) to the equation XY=R is called an
X-minimal solution if XY$=R with Y$�Ymin implies
Ymin=Y$. A Y-minimal solution is defined symmetrically.
A solution (Xmin , Ymin) is called a minimal solution if
X$Y$=R with X$�Xmin , Y$�Ymin implies Xmin=X$ and
Ymin=Y$.

Proposition 3.3. Let (X, Y) be a solution of XY=R.
Then:

(i) There exists an X-minimal (Y-minimal ) solution
(X, Ymin) (respectively (Xmin , Y)) with Ymin �Y (respec-
tively Xmin �X).

(ii) There exists a minimal solution (Xmin , Ymin) with
Xmin �X and Ymin �Y.

Proof. (i) Since X is fixed, we can consider the equa-
tion LY=R, where L=X. By Proposition 2.3, this equation
has a minimal solution Ymin �Y. This implies that (X, Ymin)
is an X-minimal solution.

(ii) Let (Xmin , Y) be a Y-minimal solution. By (i), there
exists a Xmin-minimal solution, say (Xmin , Ymin), with
Ymin �Y. Let (X$, Y$) be a solution such that X$�Xmin ,
Y$�Ymin . If X$/Xmin , then X$Y$=R implies X$Y=R and
Xmin is no more a Y-minimal solution, a contradiction.
Hence X$=Xmin . If Y$/Ymin , then XminY$=X$Y$=R
implies that (Xmin , Ymin) is no more a Xmin-minimal solu-
tion, a contradiction. Hence Y$=Ymin and (Xmin , Ymin) is a
minimal solution. K

For example, the equation XY=7+ has the minimal
solution (7, 7*).

Proposition 3.4. Let (X, Y) be a solution of XY=R.
Then this solution is X-minimal � A�Y, B�Y and
XA=XB implies A=B.

Proof. Similar to the one of Proposition 2.4 by consider-
ing the equation LY=R with L=X. K

A special case of Y-minimal solution occurs when R is a
right ideal, R{7*. In this case, there is a Y-minimal solu-
tion (X=P, Y=7*), where P is a prefix code. This follows
from the fact that every right ideal R{7* can be written as
P7*, where P is a prefix code.

We give below some properties of solutions to the equa-
tion XY=R when the language R belongs to some special
classes of languages, for example different types of codes and
commutative languages. Recall that a language L is called
commutative if w # L implies that all the words obtained
from w by arbitrarily permuting its letters belong to L.
A language L is commutative iff uxyv # L implies uyxv # L.

Proposition 3.5. Let (X1 , Y1) be a solution of the equa-
tion XY=R and let X$=X1&[1], Y$=Y1&[1].

(i) If T=(X1"Rc)c, then (X1 , T) is a solution of the
equation XY=R and, for any solution of the form (X1 , Z),
we have Z�T.

(iia) If R is a prefix (suffix) code, then Y$ (X$), if not
empty, is a prefix (suffix) code.

(iib) If R is an outfix code (respectively a hypercode),
then X$ and Y$, if not empty, are outfix codes (respectively
hypercodes).

(iiia) If R is commutative and if (X1 , Y1) is an
X1-maximal (Y1 -maximal ) solution, then Y1 is commutative
(X1 is commutative).

(iiib) If X1 is a prefix (Y1 is a suffix) code and if R is
commutative, then Y1 is commutative (X1 is commutative).

(iva) If R is left thin (right thin), then Y1 is left thin (X1

is right thin).

(ivb) If R is thin, then both X1 and Y1 are thin.

Proof. (i) We show first that X1T�R. If not, there
exist words u # X1 , v # T such that uv # Rc. This implies that
v=(u"uv)�(X1 "Rc), a contradiction because v # T.

Let Y$ be a language such that X1Y$�R. Then Y$�T.
Indeed, otherwise Y$&T{<. Let v # Y$&T. Since
v # X1"Rc, there exist w # Rc, u # X1 such that uv=w. Hence
w # X1 Y$�R, a contradiction because w # Rc.

From the above considerations it follows that
R=X1Y1 �X1T�R, which implies that (X1 , T ) is a solu-
tion to the equation.

Since (X1 , Z) is a solution, we have Z�T.

(iia) Let u, ur # Y$ with r # X*. For all v # X$,
vu, vur # R. Since R is a prefix code, r=1 and this implies Y$
is a prefix code.

(iib) Suppose first that R is an outfix code. Let u=u1u2 ,
u1 xu2 # Y$. Then, for every w # X$, wu1u2 , wu1 xu2 # R.
Since R is outfix, x=1 and hence Y$ is an outfix code.
Similarly, it can be shown that X$ is an outfix code.

Suppose now that R is a hypercode. If u, v # Y$ with
u� e v (where � e is the embedding order), then, since the
embedding order is compatible, for every w # X$, wu� e wv
with wu, wv # R. Since R is a hypercode, wu=wv, u=v, and
Y$ is a hypercode. Similarly, it can be proved that X$ is a
hypercode.
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(iiia) Since X1Y1=R and since Y1 is X1-maximal,
X1y�R implies y # Y1 . If w # X1 and uxyv # Y1 , then
wuxyv # X1 Y1=R. Hence wuyxv # R for all w # X1 . There-
fore uyxv # Y1 ; that is, Y1 is commutative.

(iiib) If uxyv # Y1 and w # X1 , then wuxyv # X1Y1=R
and wuyxv # X1 Y1=R. Hence wuyxv=x1 y1 with x1 # X1 .
Since X1 is a prefix code and w # X1 , this implies w=x1 .
Therefore uyxv # Y1 and Y1 is commutative.

(iva) Since R is left thin, there exists u # 7* such that
vu � R for any v # 7*. Suppose that Y1 is not left thin and
hence left dense. Then, for u # 7* above, there exists x # 7*
such that xu # Y1 . As (X1 , Y1) is a solution of XY=R, there
exists w # X1 such that wxu # R. This contradicts the fact
that R was left thin. Therefore Y1 is left thin.

(ivb) If R is thin, there exists u # 7* such that xuy � R
for any x, y # 7*. Suppose Y1 is not thin; that is, Y1 is
dense. Then, for u above, there exist x$, y$ # 7* such that
x$uy$ # Y1 . This implies vx$uy$ # R for some v # X1 ��a con-
tradiction. K

Note that, if R is (right, left) dense, then X or Y are not
necessarily (right, left) dense. For example, take R=7*a,
a # 7. Then R is right dense and X=7*, Y=a is a solution,
but Y is not right dense. If R=7+, then R is dense. X=7
and Y=7* is a solution with 7 not dense.

Examples. (1) Let R be the prefix code R=7k, where
k�2. Then the equation XY=R has the solutions X=7m,
Y=7n where m, n�1 and m+n=k.

(2) Let 7=[a, b] and let R be the prefix code
R=[ba, aba]. The equation XY=R has a nontrivial solu-
tion X=[b, ab], Y=[a].

(3) In all the nontrivial solutions (X, Y) given for the
preceding examples, both X and Y were prefix codes.
However, this is not the case in general for the left side of the
solution. Take, for example, the equation XY=R=b*a.
Then R is a prefix code and X=b*, Y=a is a solution,
where X is not a prefix code. Note that X and Y are com-
mutative even though R is not.

Note that, if (X, Y) is a solution of XY=R with R a prefix
code and if X is a prefix code, then either X=R or
X & R=<. Indeed, let U=X & R. If u # U, then uY�R
with u # R. Since R is a prefix code, this implies that Y=[1]
and hence X=R.

A solution (Xmin , Ymax) of the equation XY=R is said to
be a minmax solution if there is no other solution (X$, Y$)
with X$�Xmin and Ymax �Y$. For example the trivial solu-
tion (1, R) is a minmax solution. If R=7+, then (1, 7+)
and (7, 7*) are both minmax solutions. This also shows
that a minmax solution is not, in general, unique.

Proposition 3.6. If the equation XY=R has a solution
(X, Y), then it has a minmax solution (Xmin , Ymax) such that
Xmin �X and Y�Ymax.

Proof. Let P(7) be the family of pairs (X, Y) of subsets
X and Y of 7*. Define the relation � on P(7) by

(X, Y)�(X$, Y$) � X$�X, Y�Y$.

The relation � is a partial order on P(7).
Let F=[(Xi , Yi) | i # I] be the family of all the solutions

of the equation XY=R with Xi �X and Y�Yi . The family
F is partially ordered with the partial order � defined on
P(7).

Let C=[(Xj , Yj) | | j # J�I] be a chain of pairs (Xj , Yj)
from the family F,

} } } �(Xj , Yj)� } } } �(Xk , Yk)� } } } ,

where (Xj , Yj)�(Xk , Yk); i.e., Xk �Xj and Yj �Yk .
Let Xm=� j # J Xj and Ym=�j # J Yj . We will show that

(Xm , Ym) is a solution of the equation XY=R. If the chain
is finite, this is immediate.

Suppose now that the chain is infinite. Notice first that
Xm {<.

Indeed, as Xj Yj=R for all j # J and Ym=�j # J Yj we have
that R=Xj Yj �Xj Ym=R. According to Lemma 2.1 this
implies +(Xj)=+(Xk) for all j, k # J, which further means
that Xm {<.

Since Xm �Xj , XmYm �XjYm=R. For the other inclu-
sion, let u # R. For all j # J, there exist xj # Xj and yj # Yj

such that xjyj=u. There is a pair (x, y) in the finite set
P=[(r, s) | r # X, s # Ym , rs=u] such that x # Xj for all j # J.

Assume the contrary, and let P=[(r1 , s1), (r2 , s2), ...,
(rn , sn)] be an enumeration of the words in P. For each l,
1�l�n, there exists jl such that rl � Xjl . Take T=
�1�l�n Xjl . As the intersection is finite and its elements
belong to the chain, there exists a k such that T=Xk . As
XkYk=R, there are words xk # Xk �X and yk # Yk �Ym

such that xk yk=u. This implies (xk , yk) # P, a contradic-
tion. Consequently, there exists (x, y) # P such that x # Xm .
This implies u=xy # XmYm and the second inclusion is
proved.

We have therefore shown that (Xm , Ym) is a solution to
the equation.

From the above considerations, it follows that F is
inductive and that we can apply Zorn's lemma to the family
F of the solutions of the equation XY=R. Therefore there
is at least a maximal element (Xmin , Ymax); that is,
XminYmax=R and this solution is a minmax solution. K

By inverting the roles of X and Y, we have a symmetric
definition and similar results concerning maxmin solutions
(Xmax , Ymin) of XY=R.
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4. EQUATION X hX=R

If the operation h is associative, then the nth power of
a language L is well defined as

L hn=LhLh } } } hL
n times

.

(If the operation is not associative, then Lh (LhL) can be
different from (LhL)hL.)

We now consider equations of the form XhX=R and
Xn=R, where R is a given language. Clearly such equations
do not always have a solution. For example, if h is catena-
tion and R=[a], a # 7, then the equation has no solution
for n�2.

A solution X of the equation XhX=R or the equation
Xn=R is called a maximal solution if, given any solution X$
with X�X$, we have X=X$.

Proposition 4.1. (i) If the equation XhX=R has a
solution X, then it has a maximal solution Xmax with
X�Xmax .

(ii) If the operation h is associative and if the equation
X hn=R has a solution X, then it has a maximal solution
Xmax with X�Xmax.

Proof. (i) Let F=[Xi | i # I] be the family of all the
solutions of the equation XhX=R with X�Xi . If
[Xk | k # K] is a chain (relatively to inclusion) of solutions,
then the language X� =�k # K Xk is also a solution of the
equation. Therefore we can apply the Zorn lemma and
hence this equation has a maximal solution Xmax and
X�Xmax .

(ii) The proof is similar to the proof given in (i). K

The following result gives a sufficient condition under
which the solution to the equation Xn=R is unique.

Proposition 4.2. If the equation Xn=R with R a prefix
(suffix) code has a solution X, then this solution is unique and
X is a prefix (suffix) code.

Proof. If n=1, this is trivial.
Let n�2. If u, ux # X, then un, unx # R and x=1. There-

fore X=P is a prefix code. If Q is another solution, then Q
is a prefix code and Pn=Qn=R. Let Pr(7) be the set of all
the prefix codes over 7. The set Pr(7) is a free semigroup
with the operation of catenation of languages. Let P7 be the
set of generators of Pr(7). Then P and Q have unique
decompositions of the form:

P=P1P2 } } } Pk , Q=Q1Q2 } } } Qr , Pi , Qj # P7 .

From Pn=Qn it follows then that

(P1P2 } } } Pk) } } } (P1 P2 } } } Pk)

=R=(Q1 Q2 } } } Qr) } } } (Q1Q2 } } } Qr).

This further implies k=r and Pi=Qi , 1�i�r; that is,
P=Q. K

The following two results deal with the decidability of the
problem whether or not the equation Xn=R has a solution.
If n=2 and R is regular, the problem is decidable, as shown
by the proposition below.

Proposition 4.3. The problem whether there exists a
solution X to the equation X2=R is decidable for regular
languages R. Moreover, in case of an affirmative answer,
the maximal solution is regular and can be effectively con-

structed.

Proof. Let R be a regular language and let Ri , 1�i�n,
Lj , 1� j�m, be the lists of regular languages constructed in
Proposition 3.2.

Claim. If the equation X 2=R has a solution X, it also
has a regular solution.

As X is a solution to the equation, we can state that X is
a solution to the equation XY=R, where Y is the only
variable. This implies that there exists an index 1�i�n
such that XRi=R and X�Ri . If we now fix the language
Ri , then X is a solution to the equation XRi=R. Conse-
quently, there exists an index 1� j�m such that Lj Ri=R
and X�Lj .

Take now X0=Lj&Ri . We have that R=XX�X0X0�R;
therefore X0 is a solution.

The algorithm for deciding our problem will consist in
constructing the lists Ri , 1�i�n and Lj , 1� j�m, and all
the possible intersections X0=Ri & Lj . It continues by
verifying, for each such X0 , whether or not the equality
X0X0=R holds. The answer is YES if at least one such X0

is found, and NO otherwise. A maximal such language gives
a maximal solution. Note that all the intersections Ri & Lj

are regular, as intersections of regular languages, and that
they can be effectively constructed. K

Proposition 4.4. The problem whether or not the equa-
tion Xn=R, n�2, has a solution is undecidable for
context-free languages R.

Proof. Let R be a context-free language over 7 and let
* be a symbol not belonging to 7.

Consider the language R*=(7**)n&1 R*.

Claim. The equation Xn=(7**)n&1 R* has a solu-
tion iff X=7** and R=7*.
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The implication o is immediate.
For the other implication notice that the language R* is

a prefix code. According to Proposition 4.2, this implies that
the equation X n=R* has a unique solution, which is also
a prefix code.

It is therefore enough to prove that X=7** is a solution
to the equation. Let x # X. As xn # R* , the word x has to
end in *, that is, x=w*, w # (7 _ [*])*. As any word in
R* contains exactly n markers, we deduce that, in fact,
w # 7*; that is, X�7**.

For the other inclusion, consider a word w* in 7**.
The word (w*)n&1 :* belongs to R*=Xn for some : # R.

Therefore we have (w*)n&1 :*=u1*u2* } } } un*, for
some u1*, ..., un * # X. From the forms of the words and
the fact that they both contain exactly n markers, we con-
clude that u1=w, which implies w* # X; that is, we have
7**�X.

The fact that X=7** further implies R=7*, and the
proof of the claim is complete.

From the claim it follows that, if we could decide the
existence of a solution to an equation Xn=R, R context-
free, we could in particular decide the existence of a solution
to the equation Xn=R* . This, in turn, would imply that we
can decide whether or not R=7* for context-free languages
R��a contradiction. K

We now turn our attention to the existence of minimal
solutions to equations X2=R. The following lemma aids in
showing that, if the equation has a solution, then it also has
a minimal one.

Lemma 4.1. If X and X$ are two solutions of X2=R,
then +(X)=+(X$) and m(X)=m(R)�2.

Proof. Similar to the corresponding proof of Lem-
ma 2.1. K

Proposition 4.5. If X is a solution of the equation
X2=R, then there is a minimal solution Xmin such that
Xmin �X.

Proof. Let F=[Xi | i # I] be the family of all the
solutions Xi of X2=R with Xi �X. Suppose that
C=[Xj | j # J�I] is a chain from F, i.e.,

} } } �Xk � } } } �Xj � } } } �X.

Let X� =�j # J Xj . Since, by Lemma 4.1, the languages
[+(Xi) | i # I] are all equal, it follows that X� {<, because
+(Xi)�X� .

It is clear that X� 2�R. To prove that R�X� 2, let u # R.
Then, using a similar method as in the proof of Proposi-
tion 3.6, it can be shown that there exist x, y # X� such that
u=xy. Hence X� 2=R and, consequently, X� # F.

It follows that, since every chain C of F has a lower
bound in F, the family F is d-inductive and we can then

apply the Zorn's lemma. Therefore there is a minimal solu-
tion Xmin of the equation X2=R with Xmin �X. K

Note that, if the equation X2=R has a solution, the mini-
mal solution is not necessarily unique. For example, let
7=[a] and R=[a2n | n�1]. The equation X2=R has the
following two solutions:

X1=[a1, a3, a7] _ [a2k+1 | k�5]

X2=[a1, a3, a5] _ [a2k+1 | k�5].

Let X$1 and X$2 be two minimal solutions contained respec-
tively in X1 and X2 . It is easy to see that [a1, a3, a7]�X$1
and [a1, a3, a5]�X$2 and, hence, these solutions are dis-
tinct. (Assuming that the Goldbach's conjecture is true, the
equation X2=R also has the solution X=[a] _ [a p | p odd
prime number].)

Obviously, the equation X2=R does not always have a
solution. We consider in the remainder of this section
languages that have the property that they can be written as
the catenation XX for a language X�7*.

A nonempty language L is called a sr-language (square
root language) if the equation X2=L has a solution.

Examples. (1) 72n=7n7n;

(2) L=[u2];

(3) L=7n>5=[u # 7* | |u|>5]; L=7n>27n>2 .

It is immediate that a language L contains a sr-language
iff it contains a word w of the form w=u2.

Given a language L�7*, we consider the following two
conditions:

u2 # L, v2 # L O uv, vu # L (:)

x # L O _u2 # L, v2 # L with x=uv. (;)

Note that the intersection of languages satisfying (:) is also
a language satisfying (:).

An sr-language L satisfying the condition (:) is called a
complete sr-language.

In general, a sr-language is not complete. For example,
the language L=[a2, a4, a6] over 7=[a, b] is a sr-
language because L=X2 with X=[a, a3]. We have
(a2)2 # L, a2 # L, but a2a=a3 � L; i.e., condition (:) is not
satisfied.

Proposition 4.6. A language L is a complete
sr-language � L satisfies both conditions (:) and (;).

Proof. ( O ) Let x # L. As L is an sr-language, L=X2 for
some language X. Consequently there exist r, s # X such that
x=rs. Clearly, r2 and s2 are in X2=L, therefore condition
(;) is satisfied.

494 KARI AND THIERRIN



File: 571J 144209 . By:CV . Date:12:12:96 . Time:12:43 LOP8M. V8.0. Page 01:01
Codes: 6237 Signs: 4278 . Length: 56 pic 0 pts, 236 mm

( o ) Let X=[u |u2 # L]. Then, by (:), we have X2�L
and, by (;), we have L�X 2. Hence L=X2. K

Proposition 4.7. Let L�7* be a nonempty language.
Then there exists a language T�7*:

(i) L�T and T is a complete sr-language;
(ii) if L�L$�T, where L$ is a complete sr-language,

then L$=T.

Proof. Let F(L)=[Li | i # I] be the family of complete
sr-languages containing L. Since 7* # F(L), this family is
not empty.

Let D=[Lj | j # J] be a descending chain of languages
Lj # F(L),

} } } $Lr $ } } } $Ls $ } } } $L,

and let K=�j # J Lj . Clearly L�K and K satisfies condition
(:). To show that K satisfies condition (;), we have to show
that x # K implies the existence of u2, v2 # K such that x=uv.

For every i # J, there exist u2
i , v2

i # Li such that x=uivi . If
P=[(ui , vi) | x=uivi , i # J], then this set is finite. Let
P=[(u1 , v1), (u2 , v2), ..., (un , vn)] be an enumeration of the
words in P. There is a pair (u, v) # P such that for every i # J,
u2, v2 # Li and x=uv. Assume the contrary. For each r,
1�r�n, there exists ir such that u2

r � Lir or v2
r � Lir . Let

S=�1�r�n Lir . Then clearly S # D and S=Lk for some
k # J. Hence x=uk vk with u2

k , v2
k # Lk and (uk , vk) # P. Since

Lk �Lir , 1�r�n, we have a contradiction. Hence K
satisfies condition (;).

The above considerations show that F(L) is a d-inductive
family and that we can use the Zorn's lemma for F(L).
Therefore the family F(L) has at least a minimal element T
having the properties (i) and (ii). K

5. EQUATIONS R hX=L hY

Consider the equation RhX=LhY, where R, L are
given languages and X, Y are unknown languages. If R=L,
this equation has infinitely many solutions X=Y=T,
where T is any given language. If the equation RhX=L
(R=LhY) has a solution X (Y), then the equation
RhX=LhY has the solution (X, [1]) (([1], Y)),
provided that Lh[1]=L(Rh[1]=R).

Note that if the operation h is associative and if (X, Y)
is a solution, then (XhT, YhT ) is also a solution for any
nonempty language T.

If X, Y are solutions of the equation RhX=LhY, then:

(i) (X, Y) is called an X-maximal (X-minimal) solu-
tion if RhX=LhY$ with Y�Y$ (Y$�Y) implies Y=Y$.

(ii) (X, Y) is called a Y-maximal (Y-minimal) solution
if RhX$=LhY with X�X$ (X$�X) implies X=X$.

(iii) the solution (X, Y) is called a maximal (minimal)
solution if RhX$=LhY$ with X�X$, Y�Y$ (X$�X,
Y$�Y) imply X=X$, Y=Y$.

Proposition 5.1. Suppose that the equation RhX=
LhY has the solution (X, Y). Then:

(i) The equation has a unique X-maximal solution
(Y-maximal solution).

(ii) The equation has a unique maximal solution con-
taining all the other solutions.

(iii) Let (Xmax , Ymax) be the maximal solution of the
equation and let T=RhXmax=LhYmax . Then Xmax and
Ymax are respectively maximal solutions of the equations
T=RhX, respectively T=LhY.

Proof. (i) Let F=[(X, Yi) | i # I] be the family of all
the solutions of the equation RhX=LhY with X fixed.
Let Ymax=� i # I Yi . Then clearly RhX=LhYmax and
Ymax is a solution containing all the other solutions. Hence
Ymax is the unique X-maximal solution.

(ii) Let F=[(Xi , Yi) | i # I] be the family of all the
solutions of the equation RhX=LhY and define a par-
tial order � on F by

(Xi , Yi)�(Xj , Yj) � Xi �Xj , Yi �Yj .

Let 1 be a chain of elements of F:

} } } �(Xi , Yi)� } } } �(Xj , Yj)� } } } , i, j # K�I.

Let (X#=� i # K Xi , Y#=�i # K Yi). Then (X# , Y#) is a solu-
tion of the equation RhX=LhY. Indeed, let r # R
and x # X# . Then x # Xi for some i # K. Since RhXi=
LhYi , we have rhx�LhYi �LhY# and hence
RhX# �LhY# . We have the symmetric inclusion
LhY#�RhX# and therefore RhX#=LhY# .

It follows from the above considerations that F is induc-
tive. By applying Zorn's lemma we deduce that
F=[(Xi , Yi) | i # I] has at least a maximal element, say
(Xmax , Ymax), that is, a maximal solution of the equation
RhX=LhY.

Suppose that (Xmax , Ymax) and (X$, Y$) are two different
maximal solutions, RhXmax=LhYmax and RhX$=
LhY$. We have that (RhXmax) _ (RhX$)=(LhYmax) _

(LhY$), which implies Rh (Xmax _ X$)=Lh (Ymax _ Y$).
As the solutions we have considered are maximal, we
deduce that Xmax _ X$=Xmax and Ymax _ Y$=Ymax ; that
is, Xmax=X$ and Ymax=Y$.

If (X� , Y� ) is a solution of the equation, then
(Xmax _ X� , Ymax _ Y� ) is also a solution. Hence
Xmax _ X� =Xmax , Ymax _ Y� =Ymax ; therefore X� �Xmax

and Y� �Ymax .

(iii) Suppose that RhX$=T with Xmax /X$. Then
RhX$=T=LhYmax . Therefore (X$, Ymax) is a solution
of RhX=LhY and the solution (Xmax , Ymax) is not max-
imal, a contradiction. The proof is the same for the equation
RhX$=T. K
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Corollary 5.1. If (Xmax , Ymax) is the maximal solution
of the equation RX=LY, then Xmax=Pm7* and Ymax=
Qm7*, where Pm is either 1 or a prefix code and Qm is either
1 or a prefix code.

Proof. From RXmax = LYmax follows RXmax 7* =
LYmax 7* and, therefore, (Xmax7*, Ymax7*) is a solution.
Since (Xmax , Ymax) is the unique maximal solution contain-
ing all solutions, Xmax7*�Xmax and Ymax7*�Ymax and,
hence, Xmax7*=Xmax , Ymax7*=Ymax ; that is, Xmax and
Ymax are right ideals of 7*. The corollary then follows from
the fact that every right ideal of 7* can be written as P7*,
where P is either 1 or a prefix code. K

For example, the equation RX=LY with R=7 and
L=72 has the maximal solution X=77* and Y=7*.

Proposition 5.2. If the equation RX=L (LY=R) has
a solution, then the equation RX=LY has the solution
((R"Lc)c, [1]) (((L"Rc)c, [1])). If R and L are regular, then
these solutions are also regular.

Proof. It follows from [4, 3]. K

Proposition 5.3. If the equation RX=LY has a
solution (X, Y), then it has an X-minimal and a Y-minimal
solution.

Proof. Let S=RX, where X is the first component of the
given solution. By Proposition 2.3, the equation S=LY
has a minimal solution Ymin which is also an X-minimal
solution. K

The equation RX=LY can have more than one X-mini-
mal or Y-minimal solution. For example, take 7=[a],

R=[an | n�7] and L=[a5, a6, a8, a9] _ [a10+n | n�0]. It
is easy to see that X1=[a], Y1=[a3, a4] and X2=[a],
Y2=[a3, a5] are two distinct X1 -minimal solutions of the
equation RX=LY. Note that these two solutions are also
minimal solutions of the equation RX=LY.

The following example shows that the family F of solu-
tions [(Xi , Yi) | i # I] of the equation RX=LY is not
necessarily d-inductive with respect to the order �, where
(Xi , Yi)�(Xj , Yj) iff Xi �Xj , Yi �Yj . This means that it is
not possible to use Zorn's lemma to show the existence of
minimal solutions.

Let 7=[a], R=[a] and L=[a2]. Then the equation
RX=LY has the following solutions (Xn , Yn), where
Yn=[ak | k�n] and Xn=[ak+1 | k�n]. The chain
[(Xn , Yn) | n�1] has no lower bound, because
�n�1 Xn=�n�1 Yn=<, and hence F is not d-inductive.
However, this equation has a minimal solution X=[a2],
Y=[a].
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