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We consider equations of the type LOY=R, XOY=R, X°"=R,
RO X=L <Y, where < is a binary word (language) operation, L, R are
given constant languages and X, Y are the unknowns. We investigate
the existence and uniqueness of maximal and minimal solutions,
properties of solutions, and the decidability of the existence of solu-
tions.  © 1996 Academic Press, Inc.

1. INTRODUCTION

Let X be a finite alphabet. A binary operation < is a map-
ping of 2* x X* into the set of subsets of 2*. The operation
< is associative if

ul(wow)=wv)ow Yu, v, we X*.

Given two languages L,, L, =X* we define L, O L, =
{uSvlueL,,veL,}. The well-known operations of
catenation, right/left quotient and shuffle product are exam-
ples of such operations. Other examples include the inser-
tion and deletion operations. Recall that (see [3, 4]) given
words u, veX*, the insertion of v into u IS u<v=
{u,vuy|u=u,u,} and the deletion of v from u is defined as
u—v={wwylu=wow,}. Among other binary opera-
tions we mention parallel, permuted, controlled insertion,
and deletion [4, 3], k-catenation, and k-quotient ([5]).

In this paper we study equations of the type L < Y= R,
XOY=R, XOX=R, ROX=L<Y, where ¢ is a
binary word (language) operation, R and L are given non-
empty languages and X, Y are unknown languages (the
variables). In the following, X, Y, Z and their indexed
variants will denote the unknowns, while L, R and their
indexed variants will denote the given constant languages.

The case when < denotes catenation and the languages
involved are regular has been considered by Conway in [ 1].
We consider the existence and uniqueness of solutions.
While, when exploring maximal solutions, the results refer
to the general case of an abstract binary operation <, when
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considering the minimal solutions we deal with the par-
ticular cases where the operation < is catenation.

In Section 2 we deal with equations L< Y=R. In the
general case, we prove that, if the equation has a solution,
it has a unique maximal solution. The fact that all solutions
to LY = R have the same set of minimal words aids in show-
ing that if a solution exists, the equation also has a minimal
solution. A sufficient condition for the minimal solution to
be unique is obtained.

The more general equation X< Y= R is considered in
Section 3. A solution (X, Y) to the equation is called an
X-maximal solution (maximal solution) if any other solu-
tion (X, Y') (resp. (X', Y')) with Y=Y’ (resp. X=X,
Y < Y’) has the property Y’ = Y (resp. X' =X, Y'=7Y). Ifa
solution to the equation exists, the equation has a unique X-
maximal solution. The maximal solution, while it always
exists, is not necessarily unique. In the case of catenation, we
show that the equation (if it has a solution) always has an
X-minimal and a minimal solution. The existence of a non-
trivial solution to XY = R proves to be decidable if R is a
regular language. It remains an open problem whether the
problem is decidable or not in case R is a context-free
language. Properties of solutions when the constant
languages belong to some important classes of languages,
for example various types of codes, are also investigated.

The concept of a minmax solution is introduced and we
show that, if the equation has a solution, it also has a
minmax solution.

Section 4 deals with equations X "= R. If n=2 and the
equation has a solution, it also has a maximal solution. In
case of catenation, the existence of solutions also implies the
existence of a minimal solution, which is not necessarily
unique. If n =2, the problem whether the equation X" =R
has a solution is decidable for given regular languages R
(for n>2 the problem remains open). The problem is
undecidable for given context-free languages R.

In the end of the section, the notion of a square-root
language (a language R which can be written as a square
X?=R) is introduced and its properties are studied.

Finally, in Section 5 we deal with equations RO X' =
L< Y. If a solution to such an equation exists, also an
X-maximal solution and a maximal solution exists. In the
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case of catenation, the existence of a solution also implies
the existence of a minimal solution which is not necessarily
unique.

One of the main tools used in proving the existence of
minimal or maximal solutions is Zorn’s lemma. We recall it
in the following, together with other notions and notations
used throughout the paper.

Let E be a partially ordered set, where < is the partial
order. A subset CS E is a chain if a, b e C implies a <b or
b<a. The partially ordered set E is said to be inductive
(respectively d-inductive) if every chain C < E has an upper
bound (respectively a lower bound) x € E, that is, for every
c e C we have that ¢ < x (respectively x < ¢).

We remark that the term d-inductive is not standard.
Since we need both forms of inductive sets, the term d-induc-
tive (for dual inductive) is used to avoid confusion in the
following.

ZORN’S LEMMA.  If a partially ordered set E is inductive
(respectively d-inductive), then for every element u € E there
exists a maximal (respectively a minimal) element u,,,, € E
(Upmin € E) such that u <ty (Uppin < U).

A nonempty language L = X" is a prefix (suffix, outfix)
code if ue L, uxeL (ue L, xue L respectively u,u, € L,
u, xu, € L) implies x = 1.

We recall the embedding order < ,: for any w,ve X,
w<,v if and only if w=x,x,---x,, V=X, V2X5 -
VX Vnat, 121, x;, y,€2* 1<i<n+1. A nonempty
language H = X'+ is called a hypercode if and only if x < , ,
x, y € H, implies x = y.

A language L < 2* is said to be dense (left dense, right
dense) if for every weX™* there exist u, veX* (uelX*,
ve2*) such that uwvelL (uwel, wvoelL). A language
which is not dense (left dense, right dense) is termed thin
(left thin, right thin).

For further unexplained notions in formal language
theory and theory of codes the reader is referred to [6, 7].

2. EQUATIONS LO Y =R

This section investigates equations of the form L & Y= R.
After a first result concerning the existence of a maximal
solution to such an equation, we focus on the particular case
where the operation involved is catenation.

Some properties of solutions to such equations are
obtained. Moreover, the existence of minimal solutions is
studied and a sufficient condition for a minimal solution to
be unique is obtained.

A solution Y, to the equation L < Y =R is called
a maximal solution if LOY =R, Yo €Y' implies
Ymax = Y. Analogously, a solution Y, of the equation is
called a minimal solution if Lo Y' =R, Y' =Y, implies
Y, Y.

min —

KARI AND THIERRIN

If & is catenation and if the equation LY = R with R
regular has a solution Y < 2'* then it has a unique maximal
solution Y’ =(L\R)‘ which is, moreover, a regular
language (see [4]). In (L\R®)“, the symbol \ denotes
quotient.

The result has been generalized to concern equations
L < Y =R, where the operation < possesses a right inverse.
(The operation [ is said to be the right-inverse of < iff for
all words u, v, wwe have we (u<Cv) < v e (uldw)). Namely,
if a solution to such an equation exists, then the language
(LORC)¢ is a maximal solution (see [4]). The following
proposition further generalizes the result for equations
involving arbitrary binary operations, though without con-
structing the maximal solution.

PROPOSITION 2.1.  Suppose the equation L< Y =R has a
solution Y. Then the equation has a unique maximal solution

Y ax. If the operation < is associative, then R< x € R<
anax <> x E Ymax'
Proof. Let ueZX* such that L<Ou< R Then

LS (Yu{up)=R and hence Yu {u} is also a solution.
Let Y= {ue2*| L Ouc R}, The language Y., is not
empty, because Y<VY,... Since LOY=R, clearly
LOY,..=Rand Y, is a solution of the equation. If Z is
another solution, then L<Z=R and hence Z=Y,,,.
Therefore Y., is the unique maximal solution of the equa-
tion LO Y=R.

If ROxSR, then (L Y,,,,) Ox=R{Cx<=R and the
associativity of < implies L (Y. O x) S R. Therefore
Yiax OXE YVinax-

Conversely, if ¥, Ox<cY,

LY, .= R Since

then LO (Y., Ox) S

max

LO (Y OXx)=(LOY,

max max

JOx=ROx,

we have that ROx< R. |

Note that if Yis a solution of L< Y= R andif Y, is the
maximal solution, then every language 7, Y T< Y, isa
solution.

In the remainder of this section we will restrict ourselves
to equations where the operation < is catenation.

For alanguage T< X*, let p(T)={ue X*|Tu=T}. Itis
immediate that 1 € p(R) and that p(7) is a submonoid of
X*. A language R is called rc-simple (lc-simple), if R is a
class of a right (left) congruence. A language R is rc-simple
if and only if Rx n R # & implies Rx = R. Every rc-simple
language R can be decomposed as R = PQ*, where P and Q
are prefix codes or 1 (see [8§, 2]). If 1 € R, then R=Q*. If
1 ¢ R, then P is the set of prefix words of R and Q* = p(R).
We have symmetric results for lc-simple languages.

PROPOSITION 2.2.  If the equation LY = R has a solution,
R is an rc-simple language and Y., is the maximal solution
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of the equation, then Y, is rc-simple. Moreover, R= P, Q*
and Y. = P,Q*, where P, P, Q are prefix codes or 1.

Proof. As catenation is associative, Proposition 2.1
implies u€ p(R) iff Ruc R< Y, (xS Yiux < U € p(YVinax)-
Hence p(R) = p( ¥ pax)-

If YiaxX O Yo # &, then ux =v for some u, ve Y, .
If welL then wux=wv with wu, woe R. Therefore
Rxn R# J and hence Rx = R. Consequently, LY . x=
Rx<= R. Since Y, is maximal with the property

LY.« SR, it follows that Y. x S Y,.... Therefore Y, is

rc-simple.

Consequently, R=P, Q% Y,..=P, 0 and p(R)= Q%
P(Yiax) = QF, where Q,, Q, are prefix codes or 1. Since
P(R) = p( Y ax), it follows that 0, =Q,. |

For a language L=X* L+#Q, u(L)={ueLl|lul <
|u'|Yu' e L} and m(L)={|u||lueu(L)}. In other words,
(L) contains all words of minimal length of L while m(L)
is the length of a minimal word in L.

The following lemma proves that the set of minimal
words is common to all solutions of the equation LY = R.

Lemma 2.1. Let Y, Y’ be two solutions of the equation
LY=R, R# . Then u(Y)=u(Y'").

Proof. Note first that m(Y)=m(Y')=m(R)—m(L).
Letueu(Y)and veu(L). The word w = vu belongs to u(R).
As R=LY’, there exists xe L, y e Y’ such that xy =w. As
veu(L), we have that |x| > |v|. Assume |x| > |v|. Then the
word vye LY =R has the property |vy| < |w|=m(R)—
a contradiction. The only possible remaining situation is
|v| = |x|, which implies u =y, v=wx. This further implies
ueY and, as |ul|=m(Y')=m(Y), we conclude that
ueu(Y"). The other inclusion is similar. i

CORrROLLARY 2.1. If'Y, Y are two solutions of the equa-
tion LY=R, R# J, then YSX*Y and Y' = X*Y.

Proof. let ueY and seu(L). Then sueR. Since
LY =R, su=tv for some ve Y’ and te L. From seu(L)
follows that |s| < |¢| and |u| > |v|. Therefore su = tv implies
t=ss;and u=s,v,1e.,uecX*Y’, Y X*Y' Similarly, it can
be shown that Y' = 2*Y. ||

In the remainder of this section we will investigate the
existence and uniqueness of the minimal solution to LY = R.
Lemma 2.1 will aid in showing that, if the equation has a
solution then it also has a minimal solution.

PrOPOSITION 2.3.  Suppose that the equation LY =R,
L+# 3, R+, has a solution Y. Then:

(1) The equation has a minimal solution Y., with

Ymin €Y.
(1) Ifu(L) x n L +# & implies x =1 (in particular if L is
a prefix code), then the solution is unique.
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Proof. (i) Let # ={Y,|iel} be the family of all solu-
tions to the equation LY = R which have the property
Y, = Y. Suppose that € = { Y,|j€ J} is a chain from 7, i.e.,

.gY}_g...

cY.

cY,. <.

Let Y={);., Y,. According to Lemma 2.1, Y # (&, as it
contains the set u( Y). Let us now show that Y is a solution
to the equation. As Y= Y, we have that LY<S LY = R. For
the other inclusion, let ueR and let P={(r,s)|reL,
seY,rs=u}. There exists (x, y)eP such that yeY,
for all jeJ. Indeed, assume the contrary and let
P={(ry,s1),(ry, ), « (r,, s,)} be an enumeration of the
elements of P. For each (r,, s,) € P, there exists j, € J such
thats; ¢ Y,. Let T=J, <,<, Y;. As the intersection is finite,
there is an index k such that T=Y,. Since LY, =R, the
equality x,y,=u holds for some y, €Y, <Y and x, € L.
This further implies (x,, y,) € P, a contradiction.

Our assumption was false, therefore (x, y)e Pand ye Y,
for all jeJ, which shows that ue LY. This completes the
proof of the fact that Y is a solution to the equation. We
have shown that the partially ordered set & is d-inductive
(every chain has a lower bound belonging to % ). According
to Zorn’s lemma, this implies that there is at least one mini-
mal element Y., in the family % that is, there exists Y, ;,,
a minimal solution to the equation, with Y, = Y.

(i1)) Suppose now that Y’ and Y” are two solutions of
the equation LY=R. Let xeY’. Then uxe R for any
ueu(L). As uxe R=LY", we have that ux =vy for some
yeY" velL. As ueu(L), |v| = |u|. Consequently, v=ux’,
which implies u(L) x' nL+# . According to the hypo-
thesis, this further implies x’ =1 and, consequently, u =1,
x=y. We have therefore shown that xe Y”, that is,
Y’ < Y”. In a similar way we can show that Y” = Y’, which
proves that the solution to the equation is unique. ||

A special case of minimal solution occurs when R is a left
ideal (that is, Z*R< R) R#2* and L =2*. In this case,
since every left ideal R # 2* has a unique decomposition of
the form R = X*S, where S is a suffix code, the equation has
the unique minimal solution Y= S. The solution Y=X*S'is
the unique maximal solution of the equation.

Let X={a, b}, R=X"{a,b?}, and L=2". Then the
unique minimal solution is Y= {a, b*}. Since u(L) =X and
aae L nu(L) a, it follows that condition (ii) in the preced-
ing proposition is a sufficient, but not necessary, condition
for the uniqueness of the minimal solution.

The equation LY =R can have more than one minimal
solution. For example, take 2= {a}, R={a"|n>6}, and
L={a’,a%a® a’} u{a'""""|n=0}. It is easy to see that
Y,={a,a*} and Y,={a,a’} are two distinct minimal
solutions of the equation LY = R.
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ProposITION 2.4. Let Y be a solution of LY = R. Then
this solution is minimal < A<Y, BSY and LA=LB
implies A = B.

Proof. (=) Suppose that A # B. Without loss of
generality, we can assume that A=4,u A4, with
Ay nB=and 4, < B.

If 4,=¢, then A=A,<B. If C=Y—B, then

Y’ = Cu A4 is a solution with Y’ « Y—a contradiction with
the minimality of Y. If 4, # J, let C=Y— B— A,. Then
Y'=CuUB is a solution with Y’ <Y, contradicting the
minimality of Y. Therefore 4 = B.

(<) Suppose that Y is not minimal. Then there is a
solution Y= Y and LY=R=LY'. This implies Y=Y,
a contradiction. |

We conclude this section with some remarks on the
decidability of the existence of solutions to the equation
LY = R.In [4, 3] it has been shown that the problem “Does
there exist a solution Y to the equation LY = R” is decidable
for regular languages L and R. The problem is undecidable
for context-free languages L and regular languages R.

3. EQUATIONS X Y =R

Let R < 2* be a given language. Every pair (X, Y) satisfy-
ing the equality X< Y= R is called a solution of the equa-
tion.

In this section we explore the existence and uniqueness of
maximal and minimal solutions, with an emphasis on the
particular case where the operation < is catenation.

If (X, Y) is a solution of the equation X< Y= R and if
XOucsR (wOYSR), then (X, YU {u}) (Xu{v}, Y))is
also a solution. If the equation X<> Y= R has a solution
and < is associative, then, for every language L, the equa-
tions XO Y=R<O L and X< Y=L < R also have a solu-
tion, namely (X, Y L) and (L X, Y).

Note that if the operation <> is catenation, then the equa-
tion XY=R always has two trivial solutions, namely
X={1},Y=Ror X=R, Y={1}.

A nontrivial solution to the equation is not necessarily
unique. For example, if R={a’ a*,a’,a®} we have the
solution (X, Y) with X={a?% a*} and Y= {a, a’, a’}, but
this solution is not unique, because X={a* a’},
Y={a, a’} is also a solution.

If the language R is rc-simple with R=PQ* then the
equation XY = R has the solution (P, O*).

If (X, Y) is a solution of the equation X< Y =R, then
(X, Y) is called an X-maximal solution if X<> Y’ = R with
Y< Y implies Y=Y'; (X, Y)is called a Y-maximal solution
if X’CY=R with X<X' implies X=X'; the solution
(X, Y) is called a maximal solution if X' <Y =R with
XcX,YSY implies X=X, Y=Y

KARI AND THIERRIN

Note that if (X, Y) is an X-maximal ( Y-maximal) solu-
tion of X Y=R, then (Xu)n R # J (respectively
(WO Y)Nn R #(F) for every u¢Y (vé¢X). Indeed, if
XOunR=, then XOucs Rand (X, YU {u})is a solu-
tion, a contradiction with the X-maximality of (X, Y).

ProrosITION 3.1. Suppose that the equation X<> Y =R
has the solution (X, Y). The equation has a unique X-maximal
solution ( Y-maximal solution) and a maximal solution that is
not necessarily unique.

Proof. Let # ={(X, Y;)|iel} be the family of all the
solutions of the equation X<> Y=R with X fixed. Let
Yiax=U;es Y:. Then clearly X< Y, . =R and Y, is a
solution containing all the other solutions. Hence Y, is
the unique X-maximal solution.

Let (X, Y,...) be the unique X-maximal solution of
XOY=Randlet¥ ={(X,, Y,,.)|jeJ} be the family of all
the solutions of X< Y .. = R with Y, .. fixed. Let X, =
U es X;. Then clearly X ., < Y, = R and X, is a solu-
tion containing all the other solutions in relation with Y, ,,.
Suppose that (X', Y') is a solution with X, <X’ and
Yiax E Y. Since X < X,,..x,» we have that X< Y’ =R and
hence Y’ =Y, because Y., is the X-maximal solution.

Therefore X' & YV = R and (X', Y,.x) € 9. Since X, =
Ujes X; and X, €X', it follows that X, = X". Hence
(Xmax> Ymax) 18 a maximal solution of the equation
XOY=R

The maximal solution is not necessarily unique. Indeed,
suppose that the operation < is catenation. The equation
XOY=2"={ueX*||ul/=4} has the maximal solution

X=2Xand Y=2"and the maximal solution X=X*=Y. |

ax

In the remainder of this section we will consider only the
particular case where the operation involved is catenation.
In this case and if R is regular, the existence of a solution to
the equation is decidable, as shown by the following result.

PrOPOSITION 3.2. The problem whether or not the equa-
tion XY = R has a nontrivial solution is decidable for regular
languages R.

Proof. According to [4], there exists a finite number »
of distinct regular languages R;, 1 <i<n, such that, for
each L = 2'*, the following statements are equivalent:

(i) there exists a solution Y to the equation LY =R.

(i1)
Y<R,.

there exists an 7, 1 <i<n, such that LR,= R and

The regular languages R; can be effectively constructed.

In a similar way, one can obtain a list of distinct regular
languages L., ..., L,, with the following property. For any
language L', the equation XL' = R has a solution X iff it has
a solution among the languages L;,, 1< j<m, and X< L,.
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Moreover, one can remove from the above lists languages
R; (resp. L;) for which the equation LR;=R (resp.
L;L’ = R) does not hold for any language L (resp. L').

Note that the equation has a solution iff it also has a
regular solution (L;, R;), 1 <i<n, 1< j<m. The algorithm
for deciding our problem will consist in constructing these
lists. Then we consider all the products L;R;, 1 < j<m and
1 <i<n. If we find one pair different from (1, R), (R, 1), for
which the product equals R, a nontrivial solution to the
equation exists. Otherwise, the equation has no nontrivial
solutions. ||

A solution (X, Y,,;,) to the equation XY = R is called an
X-minimal solution if XY =R with Y' €Y., implies
Yiin=Y'. A Y-minimal solution is defined symmetrically.
A solution (X ., Y 18 called a minimal solution if
X'Y' =R with X' X,,;,, Y €Y, implies X ;,, =X and
Y, Y.

min —

ProrosiTION 3.3.
Then:

Let (X, Y) be a solution of XY=R.

(1) There exists an X-minimal (Y-minimal) solution
(X, Yoin) (respectively (X, Y)) with Y. S Y (respec-
tively X i € X).

(i1) There exists a minimal solution (X, Ypmn) With
Xpin EXand Yy, € Y.

min —

Proof. (i) Since X is fixed, we can consider the equa-
tion LY = R, where L = X. By Proposition 2.3, this equation
has a minimal solution Y,;, < Y. This implies that (X, Y .;.)
is an X-minimal solution.

(i1) Let (X, Y) be a Y-minimal solution. By (i), there
exists a X,,,-minimal solution, say (X n, ¥Yimin)» With
Ymin €Y. Let (X', Y') be a solution such that X' < X,
Y S Yo f X' < X, then X'Y' = Rimplies X' Y = R and
Ximin 18 N0 more a Y-minimal solution, a contradiction.
Hence X'=X_;,. If Y= Y,;,, then X_,, Y =X'Y' =R
implies that (X ,;n, Ymin) 18 N0 more a X, ;,-minimal solu-
tion, a contradiction. Hence Y’ = Y,;, and (X pin, Yinin) 1S @
minimal solution. ||

in

For example, the equation XY =2X" has the minimal
solution (X, X'*).

PropOSITION 3.4. Let (X, Y) be a solution of XY =R.
Then this solution is X-minimal < A<Y, B<Y and
XA = XB implies A= B.

Proof. Similar to the one of Proposition 2.4 by consider-
ing the equation LY =R with L=X. |

A special case of Y-minimal solution occurs when R is a
right ideal, R # X*. In this case, there is a Y-minimal solu-
tion (X=P, Y=2%*), where P is a prefix code. This follows
from the fact that every right ideal R # 2* can be written as
PX* where P is a prefix code.
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We give below some properties of solutions to the equa-
tion XY = R when the language R belongs to some special
classes of languages, for example different types of codes and
commutative languages. Recall that a language L is called
commutative if we L implies that all the words obtained
from w by arbitrarily permuting its letters belong to L.
A language L is commutative iff uxyv € L implies uyxv € L.

ProrosITION 3.5. Let (X, Y,) be a solution of the equa-
tion XY=Randlet X' =X, — {1}, Y'=Y,—{1}.

(1) If T=(X,\R), then (X,, T) is a solution of the
equation XY = R and, for any solution of the form (X, Z),
we have Z< T.

(iia) If R is a prefix (suffix) code, then Y' (X'), if not
empty, is a prefix (suffix) code.

(iib) If R is an outfix code (respectively a hypercode),
then X' and Y', if not empty, are outfix codes (respectively
hypercodes).

(iia) If R is commutative and if (X,,Y,) is an
X, -maximal (Y, -maximal) solution, then Y, is commutative
(X, is commutative).

(iib) If X, is a prefix (Y, is a suffix) code and if R is
commutative, then Y, is commutative (X, is commutative).

(iva) If R is left thin (right thin), then Y| is left thin (X,
is right thin).

(ivb)  If R is thin, then both X, and Y, are thin.

Proof. (1) We show first that X; 7< R. If not, there
exist words u € X, ve T such that uv € R¢. This implies that
v = (u\uv) < (X, \R®), a contradiction because v e T.

Let Y’ be a language such that X; Y" < R. Then Y' = T.
Indeed, otherwise Y —T# . Let veY —T. Since
ve X, \R, there exist w e R, u € X, such that uv = w. Hence
we X, Y' =R, a contradiction because w € R°.

From the above considerations it follows that
R=X,Y, € X, T< R, which implies that (X, T) is a solu-
tion to the equation.

Since (X, Z) is a solution, we have Z = T.

(la) Let w,ureY’ with reX* For all velX,
vu, vur € R. Since R is a prefix code, r = 1 and this implies Y’
is a prefix code.

(iib) Suppose first that R is an outfix code. Let u =u, u,,
u;xu, € Y. Then, for every we X', wu,u,, wu, xu, € R.
Since R is outfix, x=1 and hence Y’ is an outfix code.
Similarly, it can be shown that X” is an outfix code.

Suppose now that R is a hypercode. If u,ve Y’ with
u<,v (where <, is the embedding order), then, since the
embedding order is compatible, for every we X', wu <, wo
with wu, wo € R. Since R is a hypercode, wu = wv, u =, and
Y’ is a hypercode. Similarly, it can be proved that X’ is a
hypercode.
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(iia) Since X, Y, =R and since Y, is X,-maximal,
X,y <R implies yeY,. If weX, and uxyveY,, then
wuxyve X, Y, = R. Hence wuyxv € R for all we X,. There-
fore uyxv e Y,; that is, Y, is commutative.

(iib) If uxyve Y, and we X, then wuxyve X; Y, =R
and wuyxve X; Y, = R. Hence wuyxv = x,y,; with x; € X;.
Since X, is a prefix code and we X, this implies w = x;.
Therefore uyxve Y, and Y, is commutative.

(iva) Since R is left thin, there exists u e 2* such that
vu ¢ R for any ve 2*. Suppose that Y, is not left thin and
hence left dense. Then, for u € 2* above, there exists x e 2'*
such that xue Y,.As (X, Y,)is a solution of XY = R, there
exists we X, such that wxu e R. This contradicts the fact
that R was left thin. Therefore Y, is left thin.

(ivb) If R is thin, there exists u € 2* such that xuy ¢ R
for any x, ye 2*. Suppose Y, is not thin; that is, Y, is
dense. Then, for u above, there exist x', y' € 2* such that
x'uy’ € Y,. This implies vx'uy’ € R for some v e X,—a con-
tradiction. ||

Note that, if R is (right, left) dense, then X or Y are not
necessarily (right, left) dense. For example, take R=2X*q,
aeX. Then R is right dense and X' =X*, Y =q is a solution,
but Y is not right dense. If R=2X"*, then R is dense. X=X
and Y =2*is a solution with X' not dense.

ExampPLES. (1) Let R be the prefix code R = X*, where
k = 2. Then the equation XY = R has the solutions X = 2",
Y=2"wherem,n>=1and m+n==k.

(2) Let X={a,b} and let R be the prefix code
R={ba, aba}. The equation XY = R has a nontrivial solu-
tion X = {b, ab}, Y= {a}.

(3) In all the nontrivial solutions (X, Y) given for the
preceding examples, both X and Y were prefix codes.
However, this is not the case in general for the left side of the
solution. Take, for example, the equation XY= R=b*a.
Then R is a prefix code and X=5h*, Y=a is a solution,
where X is not a prefix code. Note that X and Y are com-
mutative even though R is not.

Note that, if (X, Y)is a solution of XY = R with R a prefix
code and if X is a prefix code, then either X=R or
XnR=. Indeed, let U=XnR. If ue U, then uYS R
with u € R. Since R is a prefix code, this implies that ¥ = {1}
and hence X = R.

A solution (X ,;n, Yomax) Of the equation XY = R is said to
be a minmax solution if there is no other solution (X', Y")
with X" < X,,, and Y., € Y. For example the trivial solu-
tion (1, R) is a minmax solution. If R=2"", then (1, 2")
and (X, 2*) are both minmax solutions. This also shows
that a minmax solution is not, in general, unique.
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ProposITION 3.6.  If the equation XY = R has a solution
(X, Y), then it has a minmax solution (X ;,, Ymax) Such that
XoinEXand YS Y,

min —

Proof. Let 2(2) be the family of pairs (X, Y) of subsets

X and Y of 2*. Define the relation = on #(2X) by
X, V)e(X,Y)=sXcX, YSv.
The relation < is a partial order on ().

Let # = {(X,, Y;)|ieI} be the family of all the solutions
of the equation XY = R with X; € X'and Y < Y,. The family
& 1s partially ordered with the partial order = defined on
2(2).

Let ¢ ={(X,, Y,)||jeJ<1} be a chain of pairs (X, Y))
from the family #

where (X, Y,) = (X}, Y);ie, Xy =X and ¥, =7,

Let X, =U;c,X;and Y,,=U);., Y;. We W1ll show that
(X,,, Y, is a solution of the equation X Y = R. If the chain
is finite, this is immediate.

Suppose now that the chain is infinite. Notice first that

m 7 D

Indeed as X;Y;=RforalljeJand Y,,=);., Y; we have
that R= XY, CX Y,,= R. According to Lemma 2.1 this
implies u(X ) u( X ©) for all j, ke J, which further means
that X, # (.

Since X, = X;, X, Y, =X;Y, =R For the other inclu-
sion, let u € R. For all jeJ, there exist x;e X; and y; e Y;
such that x;y,=u. There is a pair (x, y) in the finite set
P={(r,s)|reX,seY,, rs=u} suchthat xe X forall je J.

Assume the contrary, and let P = {(rl,sl), (Fay 85), s
(r,,$,)} be an enumeration of the words in P. For each /,
1</<n, there exists j, such that r,¢X,. Take T=
(N1<i<n Xj. As the intersection is finite and its elements
belong to the chain, there exists a k& such that 7= X,.. As
X, Y, =R, there are words x, e X, =X and y, e Y, =7,
such that x,y, =u. This implies (x,, y,) € P, a contradic-
tion. Consequently, there exists (x, y) € P such that xe X,,.
This implies u=xy€e X,,Y,, and the second inclusion is
proved.

We have therefore shown that (X,,, Y,,) is a solution to
the equation.

From the above considerations, it follows that Z is
inductive and that we can apply Zorn’s lemma to the family
& of the solutions of the equation XY = R. Therefore there
is at least a maximal element (X, Y...); that is,

min > max)

X nin Ymax = R and this solution is a minmax solution. |

By inverting the roles of X and Y, we have a symmetric
deﬁnition and similar results concerning maxmin solutions
(X, of XY=R.

max mm )
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4. EQUATION X0 X=R

If the operation <> is associative, then the nth power of
a language L is well defined as

L"=LOLO .- OL.

n times

(If the operation is not associative, then L < (L < L) can be
different from (L L)< L))

We now consider equations of the form X< X =R and
X" = R, where R is a given language. Clearly such equations
do not always have a solution. For example, if < is catena-
tion and R= {a}, a € X, then the equation has no solution
forn>=2.

A solution X of the equation X < X'= R or the equation
X" = Ris called a maximal solution if, given any solution X’
with X< X', we have X=X".

ProposiTION 4.1. (i)
solution X, then it has a maximal solution X,
XcX,

max*
(i1)  If the operation <> is associative and if the equation
X©"=R has a solution X, then it has a maximal solution
Xopax With X = X

max max*

If the equation X<> X =R has a
with

Proof. (i) Let # ={X,liel} be the family of all the
solutions of the equation X X=R with X< X, If
{X, |k e K} is a chain (relatively to inclusion) of solutions,
then the language X=J,.x X, is also a solution of the
equation. Therefore we can apply the Zorn lemma and
hence this equation has a maximal solution X, and
XcX

max *

(i1)) The proof is similar to the proof given in (i). ||

The following result gives a sufficient condition under
which the solution to the equation X” = R is unique.

ProrosITION 4.2.  If the equation X" = R with R a prefix
(suffix) code has a solution X, then this solution is unique and
X is a prefix (suffix) code.

Proof. 1f n=1, this is trivial.

Let n>=2. If u, ux € X, then u”", u"x € R and x = 1. There-
fore X = P is a prefix code. If Q is another solution, then Q
is a prefix code and P"= Q"= R. Let P,(X) be the set of all
the prefix codes over 2. The set P,(2) is a free semigroup
with the operation of catenation of languages. Let P be the
set of generators of P,(2). Then P and Q have unique
decompositions of the form:

P:PIPZ"'Pka

0=0,0,---0,, P, QjePZ'
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From P" = Q" it follows then that

(Py\Py---Pp)--- (P Py Py)
:R:(Qle"'Qr)"'(Qle"'Qr)-

This further implies k=r and P,=Q;, 1 <i<r; that is,
P=0. 1

The following two results deal with the decidability of the
problem whether or not the equation X” = R has a solution.
If n =2 and R is regular, the problem is decidable, as shown
by the proposition below.

PrOPOSITION 4.3. The problem whether there exists a
solution X to the equation X*= R is decidable for regular
languages R. Moreover, in case of an affirmative answer,
the maximal solution is regular and can be effectively con-
structed.

Proof. Let R be a regular language and let R;, 1 <i<n,
L;, 1< j<m, be thelists of regular languages constructed in
Proposition 3.2.

Claim. 1If the equation X? = R has a solution X, it also
has a regular solution.

As X is a solution to the equation, we can state that X is
a solution to the equation XY =R, where Y is the only
variable. This implies that there exists an index 1 <i<n
such that XR;= R and X < R,. If we now fix the language
R;, then X is a solution to the equation XR;= R. Conse-
quently, there exists an index 1 < j<m such that L,R,=R
and X< L,.

Take now X,=L;nR;. We have that R=XX< X, X, S R;
therefore X, is a solution.

The algorithm for deciding our problem will consist in
constructing the lists R;,, 1 <i<nand L;, 1 < j<m, and all
the possible intersections X,=R,; nL;. It continues by
verifying, for each such X,, whether or not the equality
X, X, = R holds. The answer is YES if at least one such X,
is found, and NO otherwise. A maximal such language gives
a maximal solution. Note that all the intersections R; N L,
are regular, as intersections of regular languages, and that
they can be effectively constructed. ||

PROPOSITION 4.4. The problem whether or not the equa-
tion X"=R, n=2, has a solution is undecidable for
context-free languages R.

Proof. Let R be a context-free language over X and let
# be a symbol not belonging to 2.
Consider the language R, = (Z*# )" ' R#.

Claim. The equation X" =(X*#)"~! R# has a solu-
tion iff X=X*# and R=2X*
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The implication < is immediate.

For the other implication notice that the language R, is
a prefix code. According to Proposition 4.2, this implies that
the equation X” = R, has a unique solution, which is also
a prefix code.

It is therefore enough to prove that X' = 2* # is a solution
to the equation. Let xe X. As x"e R, the word x has to
end in #, thatis, x=w#, we (2 U {#})*. Asany word in
R, contains exactly n markers, we deduce that, in fact,
we X*; thatis, X S X * #.

For the other inclusion, consider a word w# in X*#.
The word (w# )" ' a# belongs to R , = X" for some € R.

Therefore we have (W# )" ' a# =u, #u, # ---u, #, for
some u; #, ..., u, # € X. From the forms of the words and
the fact that they both contain exactly » markers, we con-
clude that u;, = w, which implies w# € X; that is, we have
Lr# X

The fact that X =2*# further implies R =2*, and the
proof of the claim is complete.

From the claim it follows that, if we could decide the
existence of a solution to an equation X” =R, R context-
free, we could in particular decide the existence of a solution
to the equation X” = R, . This, in turn, would imply that we
can decide whether or not R = X2* for context-free languages
R—a contradiction. ||

We now turn our attention to the existence of minimal
solutions to equations X* = R. The following lemma aids in
showing that, if the equation has a solution, then it also has
a minimal one.

LemMma 4.1. If X and X' are two solutions of X*=
then u(X)=u(X'") and m(X) =m(R)/2.

Proof. Similar to the corresponding proof of Lem-
ma2.1. |

ProrosiTiON 4.5. If X is a solution of the equation

X?>=R, then there is a minimal solution X, such that
Xoin S X.

min —

Proof. Let # ={X;|iel} be the family of all the
solutions X, of X?=R with X,<=X. Suppose that
%={X,;|jeJ<I} is a chain from 7, ie.,

. g)(kg E/ng .. X
Let X=(),.,X,. Since, by Lemma 4.1, the languages
{u(X |zel} are all equal, it follows that X # J, because
(X, ) s X

It is clear that X>< R. To prove that R< X?, let ue R.
Then, using a similar method as in the proof of Proposi-
tion 3.6, it can be shown that there exist x, y € X such that
u=xy. Hence X* = R and, consequently, X Z.

It follows that, since every chain € of & has a lower
bound in #, the family & is d-inductive and we can then
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apply the Zorn’s lemma. Therefore there is a minimal solu-
tion X,,;, of the equation X*= R with X,;,, = X. |

Note that, if the equation X* = R has a solution, the mini-
mal solution is not necessarily unique. For example, let
2 ={a} and R={a™|n>1}. The equation X* = R has the
following two solutions:

X, ={d",d* d"} u{a®* T k=5}
X,={d",a’,a’} u{a® " k=5}.

Let X} and X’ be two minimal solutions contained respec-
tively in X, and X,. It is easy to see that {a', a’, a’} = X}
and {d',a’, a’} = X and, hence, these solutions are dis-
tinct. (Assuming that the Goldbach’s conjecture is true, the
equation X* = R also has the solution X = {a} U {a”|p odd
prime number}.)

Obviously, the equation X?= R does not always have a
solution. We consider in the remainder of this section
languages that have the property that they can be written as
the catenation XX for a language X < X*.

A nonempty language L is called a sr-language (square
root language) if the equation X2 = L has a solution.

EXAMPLES. (1) X2'=X"X"

(2) L={u?};
(3) L:Zn>5:{u62*||u|>5};L:Zn>22n>2

It is immediate that a language L contains a sr-language
iff it contains a word w of the form w = u”.

Given a language L < 2*, we consider the following two
conditions:

welL v’eL=uv, vuel (o)

(B)

xelL=3u*el, v’elL with  x = uv.

Note that the intersection of languages satisfying («) is also
a language satisfying (a).

An sr-language L satisfying the condition (a) is called a
complete sr-language.

In general, a sr-language is not complete. For example,
the language L={da’ a* a°} over X={a,b} is a sr-
language because L=X> with X={a,a’}. We have
(a®>)?eL, a*c L, but a’a=a>¢ L; ie., condition («) is not
satisfied.

PropPoSITION 4.6. A language L is a complete
sr-language <> L satisfies both conditions (o) and ().

Proof. (=)LetxeL.As Lisan sr-language, L = X? for
some language X Consequently there exist r, s € X such that
x =rs. Clearly, r* and s° are in X* = L, therefore condition
(p) is satisfied.
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(<) Let X={u|u”eL}. Then, by («), we have X>< L
and, by (f), we have L = X*. Hence L= X2 |

ProPOSITION 4.7. Let L < X* be a nonempty language.
Then there exists a language T = X'*:

(1) L<TandTisacomplete sr-language;
(i) if L L' =T, where L' is a complete sr-language,
then L' =T.

Proof. Let F(L)={L,|iel} be the family of complete
sr-languages containing L. Since X2* € F(L), this family is
not empty.

Let D={L,|jeJ} be a descending chain of languages
LeF(L),

-2L,2---2L,2---

= 8

and let K= (;.; L;. Clearly L = K and K satisfies condition
(a). To show that K satisfies condition (f3), we have to show
that x € K implies the existence of 2, v* € K such that x = uv.

For every i € J, there exist u?, v € L, such that x = w,;v,. If
P={(u;,v;)|x=uv,;,ieJ}, then this set is finite. Let
P={(u,,v,), (us, 3), ..., (u,,, v,)} be an enumeration of the
words in P. There is a pair («, v) € P such that for every i € J,
u?,v>*eL; and x =uv. Assume the contrary. For each r,
1 <r<n, there exists i, such that u ¢ L, or v} ¢ L,. Let
S=(Vi<r<nL,. Then clearly Se D and S=L, for some
ke J. Hence x = u, v, with u;, v; € L, and (u,, v,) € P. Since
L,sL,, 1<r<n, we have a contradiction. Hence K
satisfies condition (/).

The above considerations show that F(L) is a d-inductive
family and that we can use the Zorn’s lemma for F(L).
Therefore the family F(L) has at least a minimal element T
having the properties (i) and (ii). ||

5. EQUATIONS RO X=LOY

Consider the equation RO X=L< Y, where R, L are
given languages and X, Y are unknown languages. f R=L,
this equation has infinitely many solutions X=Y=T7T,
where T is any given language. If the equation RO X' =L
(R=L<Y) has a solution X (Y), then the equation
ROX=L<Y has the solution (X, {1}) (({1},Y)),
provided that LS {1} =L(R<O {1} =R).

Note that if the operation < is associative and if (X, Y)
is a solution, then (X< T, Y< T) is also a solution for any
nonempty language 7.

If X, Y are solutions of the equation R X' = L < Y, then:

(1) (X, 7) is called an X-maximal (X-minimal) solu-
tionif ROX=L<C Y with Y Y’ (Y' < Y)implies Y=Y,

(1) (X, Y)is called a Y-maximal ( Y-minimal) solution
if RO X' =L Ywith X X' (X' < X) implies X = X'.

(iii) the solution (X, Y) is called a maximal (minimal)
solution if ROX' =LY with XX, YV (X' SX,
YCY)imply X=X, Y=Y
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PROPOSITION 5.1.  Suppose that the equation R X =
L <Y has the solution (X, Y). Then:

(1) The equation has a unique X-maximal solution
( Y-maximal solution).

(i1) The equation has a unique maximal solution con-
taining all the other solutions.

(i1) Let (Xpaxs Ymax) be the maximal solution of the
equation and let T= RO X0y =L Ypar. Then X, and

Ymax are respectively maximal solutions of the equations
T=RO X, respectively T=L< Y.

Proof. (i) Let # ={(X, Y,)|iel} be the family of all
the solutions of the equation R<C X'=L < Y with X fixed.
Let Y, .x=U;c;Y:;. Then clearly ROX=L< Y, ,, and
Y,

max 18 @ solution containing all the other solutions. Hence
Y max 18 the unique X-maximal solution.

(i) Let # ={(X,, Y;)|iel} be the family of all the
solutions of the equation R< X'=L< Y and define a par-
tial order < on % by

(X, Y)s(X,Y)=X X, Y, Y,
Let I" be a chain of elements of % :
X, Y)e (XL, Y)e -0 jeKE L

Let (X,=U;cx X, ¥, =U;cx Y3). Then (X, Y) is a solu-
tion of the equation RO X=L< Y. Indeed, let reR
and xeX,. Then xe X, for some ie K. Since RO X, =
L$Y,, we have rOxcLOY,cL<{Y, and hence
ROX,cL<Y,. We have the symmetric inclusion
LY, = RO X, and therefore ROX, =L O Y.

It follows from the above considerations that # is induc-
tive. By applying Zorn’s lemma we deduce that
F ={(X,, Y;)|iel} has at least a maximal element, say
(Xmax> Ymax), that is, a maximal solution of the equation
ROX=LCY.

Suppose that (X, ,.x, Ymax) and (X7, Y') are two different
maximal solutions, ROX, .. =LY, and ROX =

max max

LY . Wehavethat (RO X)) U(RO X)) =(LO Y ) U

(L< Y"), which implies RO (X WX ) =L (Yo U Y.
As the solutions we have considered are maximal, we

deduce that X, WX =X, and Y, .. v Y =7, that
8, Xpox=X"and Y, =Y.

If (X,Y) is a solution of the equation, then
(X WX, Y, . UY) is also a solution. Hence
XuX=X_., Y oY=V, therefore X=X,
and Yc Y,

max*

(iii) Suppose that RO X' =T with X,,, = X’. Then
ROX' =T=L Y, Therefore (X', Y,,..) is a solution
of RO X=L < Y and the solution (X, Yo.y) 1S DOt max-
imal, a contradiction. The proof'is the same for the equation

ROX' =T. 1
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COROLLARY 5.1.  If (X pax> Yimax) IS the maximal solution
of the equation RX=LY, then X .= P,,2* and Y .=
0,,2*, where P,, is either 1 or a prefix code and Q,, is either
1 or a prefix code.

Proof. From RX,, = LY,, follows RX,, 2*=

LY, ..2* and, thereforla, (X imax 2 ¥, Ymax 2 ¥) 1s a solution.
Since (X hax> Ymax) 18 the unique maximal solution contain-
ing all solutions, X,,,x2* S X,.x and Y, ., 2* = Y, .. and,

hence, X0 2* = Xaxs Ymax2 F = Yiaxs cthat is, X, and
Y max are right ideals of 2*. The corollary then follows from
the fact that every right ideal of 2* can be written as PX*,

where P is either 1 or a prefix code. ||

For example, the equation RX=LY with R=2 and
L = >? has the maximal solution X=XX* and Y =X*.

ProrosiTiION 5.2.  If the equation RX=L (LY = R) has
a solution, then the equation RX =LY has the solution
((R\L), {1}) ((L\R“)", {1})). If R and L are regular, then
these solutions are also regular.

Proof. 1t follows from [4, 3]. |

ProrosITION 5.3. If the equation RX=LY has a
solution (X, Y), then it has an X-minimal and a Y-minimal
solution.

Proof. Let S= RX, where X is the first component of the
given solution. By Proposition 2.3, the equation S=LY
has a minimal solution Y,;, which is also an X-minimal
solution. ||

The equation RX = LY can have more than one X-mini-
mal or Y-minimal solution. For example, take 2= {a},
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R={a"|n=7} and L={a’,a%a®, a°} 0 {a'""""|n=0}.1t
is easy to see that X, ={a}, Y,={a’, a*} and X,={a},
Y,={a’, @’} are two distinct X,-minimal solutions of the
equation RX = LY. Note that these two solutions are also
minimal solutions of the equation RX=LY.

The following example shows that the family & of solu-
tions {(X;, Y;)|iel} of the equation RX=LY is not
necessarily d-inductive with respect to the order <, where
(X, Y)= (X, Y)iff X; = X,, Y, = Y,. This means that it is
not possible to use Zorn’s lemma to show the existence of
minimal solutions.

Let X ={a}, R={a} and L= {a’}. Then the equation
RX=LY has the following solutions (X,, Y,), where
Y,={d"|k>n} and X,={d"*'|k>=n}. The chain
{(X,,Y,)|n>=1} has no lower bound, because
Nus1X,=Nns1 Y,=, and hence ¥ is not d-inductive.
However, this equation has a minimal solution X = {a’},
Y={a}.
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